Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PCPs via the low-degree long code and hardness for constrained hypergraph coloring∗

We develop new techniques to incorporate the recently proposed “short code” (a low-degree version of the long code) into the construction and analysis of PCPs in the classical “LABEL-COVER + Fourier Analysis” framework. As a result, we obtain more size-efficient PCPs that yield improved hardness results for approximating CSPs and certain coloring-type problems. In particular, we show a hardness...

متن کامل

Hardness of Approximate Coloring

The graph coloring problem is a notoriously hard problem, for which we do not have efficient algorithms. A coloring of a graph is an assignment of colors to its vertices such that the end points of every edge have different colors. A k-coloring is a coloring that uses at most k distinct colors. The graph coloring problem is to find a coloring that uses the minimum number of colors. Given a 3-co...

متن کامل

Hardness for Hypergraph Coloring

We show that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with 2(logN) 1/10−o(1) colors, where N is the number of vertices. There has been much focus on hardness of hypergraph coloring recently. In [17], Guruswami, H̊astad, Harsha, Srinivasan and Varma showed that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with 22Ω( √ log logN) colors. Their result is obtain...

متن کامل

Rainbow coloring the cube

R. J. Faudree DEPARTMENT OF MATHEMATICAL SCIENCES MEMPHIS STATE UNIVERSITY MEMPHIS, TENNESSEE A. Gyarfas COMPUTER AND AUTOMATION INSTITUTE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, HUNGARY L. Lesniak DEPARTMENT OF MATH AND COMPUTER SCIENCE DREW UNIVERSITY MADISON, NEW JERSEY R. H. Schelp DEPARTMENT OF MATHEMATICAL SCIENCES MEMPHIS STATE UNIVERSITY MEMPHIS, TENNESSEE We prove that for d ~ 4, d * 5...

متن کامل

Rainbow edge-coloring and rainbow domination

Let G be an edge-colored graph with n vertices. A rainbow subgraph is a subgraph whose edges have distinct colors. The rainbow edge-chromatic number of G, written χ̂′(G), is the minimum number of rainbow matchings needed to cover E(G). An edgecolored graph is t-tolerant if it contains no monochromatic star with t+1 edges. If G is t-tolerant, then χ̂′(G) < t(t+ 1)n lnn, and examples exist with χ̂′(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2020

ISSN: 0895-4801,1095-7146

DOI: 10.1137/19m127731x